
www.manaraa.com

A Formal Model for Trust in Dynamic Networks

Marco Carbone1, Mogens Nielsen1, Vladimiro Sassone2

1 BRICS∗, University of Aarhus 2 COGS, University of Sussex

Abstract
We propose a formal model of trust informed by the Global
Computing scenario and focusing on the aspects of trust
formation, evolution, and propagation. The model is based
on a novel notion of trust structures which, building on con-
cepts from trust management and domain theory, feature at
the same time a trust and an information partial order.

Introduction

Global Computing (GC) is an emerging aspect of computer
science and technology. A GC system is composed of enti-
ties which are autonomous, decentralised, mobile, dynam-
ically configurable, and capable of operating under partial
information. Such systems, as e.g. the Internet, become eas-
ily very complex, and bring forward once again the need to
guarantee security properties. Traditional security mecha-
nisms, however, have severe limitations in this setting, as
they are often either too weak to safeguard against the ac-
tual risks, or so stringent to impose unacceptable burdens on
the effectiveness and flexibility of the infrastructure.Trust
management systems, whereby safety critical decision are
made based on trust policies and their deployment in the
presence of partial knowledge, have an important role to
play in GC.

This paper focuses on the foundations of formal models
for trust in GC-like environments, capable of underpinning
the use of trust-based security mechanisms as an alternative
to the traditional ones.

Trust is a fundamental concept in human behaviour, and
has enabled collaboration between humans and organisa-
tions for millennia. The ultimate aim of our research on
trust-based systems is to transfer such forms of collabora-
tion to modern computing scenarios. There will clearly be
differences between the informal notion of trust explored

MC and MN supported by ‘SECURE: Secure Environments for Col-
laboration among Ubiquitous Roaming Entities’, EU FET-GC IST-2001-
32486. MC supported by ‘DisCo: Semantic Foundations of Distributed
Computation’, EU IHP ‘Marie Curie’ HPMT-CT-2001-00290. VS sup-
ported by ‘MyThS: Models and Types for Security in Mobile Distributed
Systems’, EU FET-GC IST-2001-32617.∗Basic Research In Computer
Science funded by the Danish National Research Foundation.

in the social sciences and the kind of formality needed for
computing. Mainly, our models need in the end to be op-
erational, so as to be implementable as part of GC systems.
Equally important is their role in providing a formal under-
standing of how trust is formed from complex interactions
between individuals, so as to support reasoning about prop-
erties of trust-based systems.

Although our notion of trusted entity intends to cover
only computing entities – even though of variable nature,
spanning from soft to hard devices of all sorts – familiarity
with trust models from the social sciences is a good start-
ing point for our search of a foundational, comprehensive
formal model of trust. One of our main sources has been
the work by McKnight and Chervany [15], who provide a
typology of trust used to classify existing research on trust
in domains like sociology, psychology, management, eco-
nomics, and political sciences. Trust is thereby classified
conceptually in six categories:disposition, when entitya
is naturally inclined to trust;situation, whena trusts a par-
ticular scenario;structure, whena trusts impersonally the
structureb is part of;belief, whena believesb is trustwor-
thy; intention, whena is willing to depend onb; behaviour,
whena voluntarily depends onb. Orthogonally, the notion
of trusteeis classified in categories, the most relevant of
which decree thatb is trusted because of itscompetence,
benevolence, integrity, or predictability. We believe that a
good mathematical model of computational trust should be
capable of expressing all such aspects, as well as further
notions of primary relevance in computing, e.g. that trust
information is time dependent and, in general, varies very
rapidly. Also, it should be sufficiently general to allow com-
plex structures representing combinations of different types
of trust.

We think of the standard deployment of a trust manage-
ment system as consisting of a “trust engine” and a “risk
engine” coupled together as part of a “principal.” The trust
engine is responsible for updating trust information based
on direct and indirect observations or evidence, and to pro-
vide trust information to the risk engine as input to its proce-
dures for handling requests. The risk engine will feed back
information on principals’ behaviours as updating input to
the trust engine. Abstracting over this point of view, we

www.manaraa.com

single out as central issues for our trust model the aspects
of trust formation, evolution, andpropagation. The latter is
particularly important in our intended application domain,
where the set of active principals is large and open-ended,
and centralised trust and ad-hoc methods of propagation of
its variations make little sense. An important propagation
mechanism isdelegation, whereby principals cooperate to
implement complex, intertwined “global” trusting schemes.
Just to pin down the idea, bankb may be willing to trust
client c to an overdraft limitx only if bank b′ trusts it at
least up to 2x/3, andc itself does not trustd, a crook known
to b. Delegation has important consequences for trust repre-
sentation, because it brings forward the idea oftrust policy,
i.e. algorithmic rules – such as bankb’s above – to evalu-
ate trust requests. In principle, trust among principals can
be represented straightforwardly, as a function from pairs of
principals to trust levels,

GTrust : Principal−→ Principal−→ TrustDegree

whereGTrust(a) is a function which associates to each
principal b the value ofa’s trust in b. Delegation leads to
model local policies, sayb’s, as functions

TrustPolicy : GTrust−→ Principal−→ TrustDegree

where the first argument is (a representation of) a universal
trust function thatb needs, to knowb′’s level of trust inc
and whether or notc trustsd.

The domain ofTrustPolicy makes the core of the issue
clear: we are now entangled in a “web of trust,” whereby
each local policy makes reference to other principals’ local
policies. Technically, this means that policies are defined
by mutual recursion, and global trust is the function deter-
mined collectively by the web of policies, the function that
stitches them all together. This amounts to say thatGTrust
is the leastfixpoint of the universal set of local policies, a
fact first noticed in [21] which leads straight todomain the-
ory [19]. Domains are kinds of partially ordered sets which
underpin the semantic theory of programming languages
and have therefore been studied extensively. Working with
domains allows us to use a rich and well-established the-
ory of fixpoints to develop a theory of security policies, as
well as flexible constructions to build structured trust do-
mains out of basic ones. This is precisely context and the
specific contribution of this paper, which introduces a novel
domain-like structure, thetrust structures, to assign mean-
ing and compute trust functions in a GC scenario. We an-
ticipate that, in due time, techniques based on such theories
will find their way as part of trust engines.

As domains are (complete) partial orders and trust de-
grees naturally come equipped with an ordering relation
(actually a lattice structure), a possible way forward is to
apply the fixpoint theory toTrustDegree viewed as a do-
main. This is indeed the way of [21] and, as we motivate

below, it is not a viable route for GC. There are very many
reasons in a dynamic “web of trust” why a principala try-
ing to queryb aboutc may not get the information it needs:
b may be temporarily offline, or in the process of updating
its policy, or experiencing a network delay, or perhaps un-
willing to talk to a. Unfortunately, the fixpoint approach
would in such cases evaluate the degree of trust ofa in c to
be the lowest trust level, and this decision would be wrong.
It would yield the wrong semantics. Principala should not
distrustc, but accept that it has not yet had enough infor-
mation to make a decision aboutc. What is worse with this
confusion of “trust” with “knowledge,” is that the informa-
tion fromb could then become available a few milliseconds
aftera’s possibly wrong decision.

We counter this problem by maintaining two distinct or-
der structures on trust values: atrust orderingand aninfor-
mation ordering. The former represents the degree of trust-
worthiness, with a least element representing, say, absolute
distrust, and a greatest element representing absolute trust;
the latter the degree of precision of trust information, with
a least element representing no knowledge and a greatest
element representing certainty. The domain-theoretic order
used to compute the global trust function is the information
order. Its key conceptual contribution is to introduce a no-
tion of “uncertainty” in the trust value principals obtain by
evaluating their policies. Its technical contribution is to pro-
vide for the “semantically right” fixpoint to be computed.

Following this lead, we introduce and study trust struc-
tures of the kind(D,�,v), where the two order relations
over the setD, carry the meaning illustrated above. We
then provide constructions on trust structures – including
an “interval” construction which endows complete lattices
with a natural notion of uncertainty and lifts them to trust
structures – and use the results to interpret a toy, yet signifi-
cant policy language. We believe that introducing the infor-
mation ordering alongside the trust ordering is a significant
step towards a model of trust feasible in a GC scenario; it
is a major point of departure from the work of Weeks [21],
and the central contribution of this paper.

Plan of the document. In §1 we define our trust model
along the lines illustrated above, whilst §2 focuses on trust
structures, providing methods for constructing useful struc-
tures as well as a general method to add uncertainty to the
model. In §3 we introduce a policy language and use our
trust structure to give it a denotational semantics.

Related Work. Trust is a pervasive notion, thoroughly
studied in a variety of different fields, including social sci-
ences, economics and philosophy. Here we only survey re-
cent work on trust as a subject in computing; the reader is
referred to [15] for a broader interpretation. A detailed sur-
vey can be found in Grandison and Sloman’s [9].

www.manaraa.com

Most of the existing relevant work concerns system
building. In [18], Rivestet al. describe SDSI, a public key
infrastructure featuring a decentralised name space which
allows principals to create their own local names to re-
fer to other principals’ keys and in general, names. El-
lison et al. [8] proposed a variation of the model which
contributes flexible means to specify authorisation policies.
The proposals are now merged in a single approach, dubbed
SPKI/SDSI. Other systems of practical relevance include
PGP [24], based on keys signed by trusted certificating
authorities; KeyNote [2], which provides a single, unified
language for both local policies and credential containing
predicates to describe the trusted actions granted by (the
holders of) specific public keys; and REFEREE [5], which
uses a tri-valued logic which enriches the booleans with a
valueunknown. Trust in the framework of mobile agents
is discussed e.g. in [22]. Delegation plays a relevant rôle
in trust-based distributed systems. A classification of dele-
gation schemes is proposed by Dinget al. [7], where they
discuss implementation and analyse appropriate protocols.
The ideas expressed in [7] lie at a level different from ours,
as their focus is exclusively on access control.

The theoretical work can be broadly divided in two main
streams: logics, where the trust engine is responsible for
constructing [4, 3, 11, 12, 13] or checking [1] a proof that
the desired request is valid; and computational models [21,
6], like our approach.

Burrowset al.propose the BAN logic [4], a language for
expressing properties of and reasoning about the authentica-
tion process between two entities. The language is founded
on cryptographic reasoning with logical operators dealing
with notions of shared keys, public keys, encrypted state-
ments, secrets, nonce freshness and statement jurisdiction.
In [3], Abadiet al.enhance the language by introducing del-
egation and groups of principals: each principal can have
a particular role in particular actions. The Authorisation
Specification Language (ASL) by Jajodiaet al. [11] sepa-
rates explicitly policies and basic mechanisms, so as to al-
low a more flexible approach to the specification and imple-
mentation of trust systems. ASL supports also role-based
access control.

Modal logics have a relevant place in specifying trust
models, and have been used to express possibility, neces-
sity, belief, knowledge, temporal progression, and more.
Jones and Firozabadi [12] address the issue of reliability of
agents’ transmissions using a modal logic of actions [16]
to model agents. Rangan [17] views a distributed sys-
tem as a collection of communicating agents in which an
agent’s state is the history of its messages. Rangan’s model
builds on simple trust statements to define simple prop-
erties, which are then used to specify systems and anal-
yse them with respect to properties of interest. Recently,
Jøsang [13] proposed a logic of uncertain probabilities, a

work which is related to our interval construction and can
be recast as an instance of it in our framework. Specifically,
Jøsang considers intervals of belief and disbelief over real
numbers between 0 and 1.

Concerning computational models, Weeks [21] provides
a model based on fixpoint computations which is of great
relevance to our work. Winsborough and Li [23] study au-
tomated trust negotiation, an approach to regulate the ex-
change of sensitive credentials in untrusted environments.
Clarkeet al. [6] provide an algorithm for “certificate chain
discovery” in SPKI/SDSI whereby principals build coherent
chains of certificates to request and grant trust-based access
to resources.

1 A Model for Trust

The introduction has singled out the traits of trust most rel-
evant to our computational scenario: trust involvesentities,
has adegree, is based onobservationsand ultimately deter-
mines theinteractionamong entities. Our model will target
these aspects primarily.

Entities will be referred to asprincipals. They form
a setP ranged over bya,b,c, . . . and p. We assume a
set T of trust valueswhose elements represent degrees
of trust. These can be simple values, such as{trusted,
distrusted}, or also structured values, e.g. pairs where
the first element represents an action, say access a file, and
the second a trust level associated to that action; or perhaps
vectors whose elements represent benevolence in different
situations.

As trust varies with experience, a model should be ca-
pable of dealing with observations resulting from the prin-
cipal’s interaction with the environment. For clarity, let us
isolate the principal’s trust management from the rest of its
behaviour, and think of each principal as having a “trust
box,” that is an “object” module containing all of its trust
management operations and data. In this paper, we only fo-
cus on the trust box and assume, without loss of generality,
that the remaining parts of the principal interact with it via
appropriately exported methods.

Modelling the Trust Box

Principals’ mutual trust can be modelled as a function which
associates to each pair of principals a trust valuet in T :

m : P −→ P −→ T

Functionmapplied toa and then tob returns the trust value
m(a)(b) ∈ T expressinga’s trust in b. This however does
not mean that a single principal’s trust can be modelled as
a function fromP to T , sincea’s trust values may depend
on other principals’ values. For instance,a may wish to en-
force that its trust inc is b’s trust inc. Similarly, we may be

www.manaraa.com

willing to receive a message from unknown sources, pro-
vided somebody we know trusts the sender. This mecha-
nism of relying on third-party assessments, known asdel-
egation, is fundamental in all scenarios involving coopera-
tion, including computational paradigms such as GC.

This leads us to a refined view of a principal’s trust as
being defined by apolicy. According to such a view, each
principal has a local policyπ which contributes by way of
delegation to form the global trustm. A policy expresses
how the principal computes trust information given not just
his own beliefs, but also other principals’ beliefs. It follows
that, as anticipated in the introduction,a’s policy πa has the
type below, whose first argument represents the knowledge
of third principals’ policies thata needs to evaluateπa.

πa : (P −→ P −→ T)−→ (P −→ T)

In this paper we leave unspecified the way a policy is ac-
tually defined, as this definitely depends on the application.
We study a relevant example of policy language in §3.

By collecting together the individual policies, we obtain
a functionΠ , λp : P .πp whose type is (isomorphic to)

Π : (P −→ P −→ T)−→ (P −→ P −→ T).

To interpret this collection of mutually recursive local poli-
cies as a global trust functionm, we apply some basic
domain theory, namely fixpoints and complete partial or-
ders. We recall below the main notions involved; in general
we assume the reader to be acquainted with partial orders
(cf. [10] for a thorough introduction). Given a partial or-
der (T,v), an ω-chainc is a monotone function from the
set of natural numbersω to T; that isc = (cn)n∈ω such that
c0 v c1 v c2 v . . .

Definition 1 (CPOs and Continous functions).A partial
order (T,v) is a complete partial order(CPO) if it has a
least element⊥ and eachω-chainc in T has a least upper
bound

⊔
c. A function f between CPOs is continuous if for

eachω-chainc, it holds that
⊔

f (c) = f (
⊔

c).

The importance of CPOs here is that every continuous
function f : (T,v) → (T,v) on a CPO has a least fixpoint
fix(f) ∈ T, that is a leastx such thatf (x) = x (cf. [19]). So,
requiringT to be a CPO, which implies thatP → P → T
is a CPO too, and takingΠ to be continuous, we can define
the global trust asm, fix(Π), theleast fixpointof Π.

The question arises as to what order to take forv. We
maintain that itcannotbe the order which measures the de-
gree of trust. An example is worth many words. LetT
be the CPO{low ≤ medium ≤ high}, and consider a pol-
icy πa which delegates tob the degree of trust to assign to
c. In this setup,a will assignlow trust toc when it is not
able to gather information aboutc from b. This however
would be an erroneous conclusion, as the interruption in the

flow of information does not bear any final meaning about
trust, its most likely cause being a transient network delay
that will soon be resolved. The right conclusion fora to
draw is not to distrustc, but to acknowledge that it does
not know (yet) whether or not to trustc. In other words, if
we want to model dynamic networks, we cannot allow con-
fusion between “don’t trust” and “I don’t know:” the
latter only means lack of evidence for trust or distrust, the
former implies a trust-based, possibly irreversible decision.

In order to make sense of our framework in a GC sce-
nario, we need to acknowledge that principals only have a
partial knowledge of their surroundings and, therefore, of
their owntrust values. We thus considerapproximatetrust
values which embody a level ofuncertaintyas to which
value we are actually presented with. Specifically, beside
the usualtrust value ordering, we equip trust values with
a trust information ordering. While the former measures
the degree of trustworthiness, the latter measures the de-
gree of uncertainty present in our trust information, that is
its information content. We will assume that the setT of
(approximations of) trust values is a CPO with an ordering
relationv. Thent v t ′ means thatt ′ “refines” t, by provid-
ing more information thant about what trust value is being
approximated. With this understanding the continuity ofΠ
is a very intuitive assumption: it asserts that the better deter-
mined the information from the other principals, the better
determined is value returned by the policy. An example will
help to fix these ideas.

Example 1. Let us refine the set of trust valuesT dis-
cussed previously by adding some new intermediate values
{⊥,∗,low,medium,high}, and consider the information or-
deringv specified by the following Hasse diagram.

high medium

*

DDDDDD
vvvvvv

low

⊥

HHHHHHH
sssssss

Note that this ordering says nothing about what is more
trust. It focus only on the quantity of information a prin-
cipal has. The limit of any chain reflects the finest informa-
tion. The element∗ represents the uncertainty as to whether
high or medium holds, while⊥ gives no hint at all about
the actual trust value. Suppose we have a set of principals
P = {a,b,c} with the following policies.

a b c

a high ⊥ ask b

b ∗ high low

c ask b high high

www.manaraa.com

where each row is a principal’s policy. For instance the third
row givesc’s policy: c’s trust ina is b’s trust ina; c’s trust in
b is high. After a few interactions in which the principals’
exchange their current values, following fixpoint is reached.

a b c

a high ⊥ low

b ∗ high low

c ∗ high high

We reiterate that, importantly, the orderingv is not to be
identified with the equally essential ordering “more trust.”

2 Trust Structures

Having pointed out the need for order structures equipped
at the same time with an information and a trust ordering, in
this section we focus on the triples(T ,�,v), which we call
trust structures, and study their basic properties. The notion
of complete lattice, recalled below, will play a relevant role.

Definition 2 (Complete lattice). A partial order(D,≤) is
a complete latticeif every X ⊆ D has a least upper bound
(lub) and, as a consequence, a greatest lower bound (glb).
We use∨ and∧ to denote, respectively, lubs and glbs in
lattices.

When defining a trust management system, it is natural
to start off with a setD of trust values, or degrees. On top
of that, we are likely to need ways to compare and combine
elements ofD so as to form, say, a degree which compre-
hends a given set of trust values, or represents the trust level
common to several principals. This amounts to start with
a complete lattice(D,≤), where those combinators can be
considered as taking lubs or glbs of sets of values. To ac-
count for uncertainty, we define an operatorI to extend a
lattice(D,≤) to a trust structure(T ,�,v). The setT con-
sists of the set of intervals overD which, besides contain-
ing a precise image ofD – viz. the singletons – represent
naturally the notion of approximation, or uncertainty about
elements ofD.

Interval Construction

We define now the ordering� which has been already con-
sidered in [14].

Definition 3. Given a complete lattice(D,≤) andX,Y⊆D
nonempty subsets we say thatX �Y if and only if

∧X ≤ ∧Y and ∨X ≤ ∨Y

Clearly,� is not a partial order on the subsets ofD, as
the antisymmetry law fails. We get a partial order by con-
sidering as usual the equivalence classes of∼ = �∩�. It

turns out that the intervals overD are a set of representatives
of such classes.

Definition 4. For (D,≤) a complete lattice, the setI(D) =
{[d0,d1] | d0,d1 ∈ D, d0 ≤ d1}, where[d0,d1] = {d |d0 ≤
d≤ d1} is the interval ofD determined byd0 andd1.

Proposition 1. Let X = [d0,d1] be an interval in D. Then,
∧X is d0 and∨X is d1.

As a consequence of the proposition above we have that
X∼ [∧X,∨X], for all X⊆D. Furthermore,[d0,d1]∼ [d′0,d

′
1]

implies thatd0 = d′0 and d1 = d′1. The following lemma
characterises� in terms of≤.

Lemma 1. For [d0,d1] and [d′0,d
′
1] intervals of D, we have

[d0,d1]� [d′0,d
′
1] if and only if d0 ≤ d′0 and d1 ≤ d′1.

We can now show that the lattice structure on(D,≤) is
lifted to a lattice structure(I(D),�) on intervals.

Theorem 1. (I(D),�) is a complete lattice.

Proof. Let Sbe a subset{[di
0,d

i
1]| i ∈ J} of I(D), for some

J⊆ ω. Then
∨

S= [∨di
0,∨di

1]. �

We now define an ordering on intervals which reflects
their information contents. Such an ordering will be a CPO
where we base fixpoint computations on. The task is quite
easy: as the interval[d0,d1] expresses a value betweend0

andd1, the narrower the interval, the lesser the uncertainty.
This leads directly to the following definition.

Definition 5. For(D,≤) a complete lattice andX,Y∈ I(D),
defineX vY if Y ⊆ X.

Analogously to�, we can characterisev in terms of≤.

Lemma 2. For [d0,d1] and [d′0,d
′
1] intervals of D, we have

that [d0,d1]v [d′0,d
′
1] if and only if d0 ≤ d′0 and d′1 ≤ d1.

Finally, as for the previous ordering, we have the follow-
ing result.

Theorem 2. (I(D),v) is a CPO.

Proof. The least element of(I(D),v) is D = [∧D,∨D]. The
lub of anω-chain[dn

0,dn
1]n is

⊔
[dn

0,dn
1]n = [∨dn

0,∧dn
1]. �

The trust structures above give a method to model trust
based systems. We remark that intervals are a natural way
to express partial information: trust in a principal is[d0,d1]
when it could be any value betweend0 andd1.

Example 2 (Intervals in [0,1]). Let R stand for the set of
reals between 0 and 1, which is a complete lattice with the
usual ordering≤, and let us consider the setI(R) of intervals
in R. It follows from the previous results that(I(R),�) is
a complete lattice and(I(R),v) is a complete partial order.
The trust domain so obtained is particularly interesting, as it

www.manaraa.com

allows us to express complex policies. In particular, it is re-
lated to the uncertainty logic [13], where an interval[d0,d1]
in I(R) is seen as a pair of numbers whered0 is called belief
and 1− d1 disbelief. Although a formal comparison with
Jøsang’s logic is beyond the scope of our presentation, in
the following we shall rework a few simple examples from
[13] in the present framework.

An important property of(I(D),�,v) is stated below.

Theorem 3. Relation� is continuous with respect tov
and, conversely, relationv is continuous with respect to�.

Lifting Operators

The continuity of the functionΠ is an important require-
ment. This property depends on the operators used with the
policies. In the sequel we give a useful result, with respect
to our interval construction, which allows us to lift contin-
uous operators in the original lattice(D,≤) to continuous
operators in(I(D),v) and(I(D),�).

Definition 6. For (D,≤) and(D′,≤′) complete lattices and
f : D−→D′ a continuous function, letI(f) : I(D)−→ I(D′)
be thepointwise extensionof f defined as

I(f)([d0,d1]) = [f (d0), f (d1)].

Note that in this definition the continuity off ensures
thatI(f) is well defined.

An ω-cochain in a complete lattice(D,≤), is an anti-
monotone functionc : ω → T, that is a function such that
i ≤ j impliesc j ≤ ci . A function f : (D,≤) −→ (D′,≤′) is
co-continuous iff for eachω-cochainc in D, it holds that∧

f (c) = f (
∧

c); f is bi-continuous if it is continuous and
co-continuous.

The following proposition states that allω-cochains in
(I(D),v) have glbs.

Proposition 2. Let [dn
0,dn

1] be anω-cochain in(I(D),v).
Thenu[dn

0,dn
1] = [∧dn

0,∨dn
1].

Proof. Symmetric to that of Theorem 2. �

We can now give the following result about lifted func-
tions in trust structures.

Theorem 4. For (D,≤) and(D′,≤′) complete lattices and
f : D −→ D′ a bi-continuous function, the pointwise exten-
sion I(f) is bi-continuous with respect to both the informa-
tion and the trust orderings.

Proof. Easy, from the definition ofI(f), together with The-
orems 1 and 2 and with the bi-continuity off . �

In the following examples we show how to apply the pre-
vious theorem to some interesting operators.

Example 3 (Lub and glb operators). The most natural op-
erators, regarding lattices, are lub and glb. It is easy to see
that they are bi-continuous in a complete lattice(D,≤). Ex-
ploiting Theorem 4 we can now state that lub and glb with
respect to� are bi-continuous over(I(D),v).

Example 4 (Multiplication and Sum). When considering
the interval construction overR, as in Example 2, we can
extend the operators of sum (weighted) and multiplication
over the intervals. In fact, given two intervals[d0,d1] and
[d′0,d

′
1], the product is defined as

[d0,d1] · [d′0,d′1] = [d0 ·d′0,d1 ·d′1],

which is exactly the extension of multiplication over reals.
Similarly we can define sum as

[d0,d1]+ [d′0,d
′
1] = [d0 +d′0−d0 ·d′0,d1 +d′1−d1 ·d′1].

These operations appear in [13] under the names of con-
junction and disjunction.

Example 5 (A non-lifted operator: Discounting). Dis-
counting, as defined in [13], is an operator which weighs
the trust value received from a delegation according to the
trust in the delegated principal.

[d0,d1]B [d′0,d
′
1] = [d0 ·d′0,1−d0 · (1−d′1)]

2.1 Product and Function Constructors

Our model should satisfy “context dependent” trust. By this
we mean that trusting a principala to obtain information
about restaurants does not mean that we trusta about, say,
sailing. We can accommodate this kind of situation using a
simple property of lattices and CPO’s. Namely, we can form
products of trust structures where each component accounts
for a particular context. For instance, using a domain of
the formRestaurants×Sailingwill allow us to distinguish
abouta’s dependability on the two issues of our example.
The next theorem shows that extending the orders pointwise
to products and function spaces gives the result we need.

Theorem 5. Given two complete lattices(D,≤), (D′,≤′)
and a generic set X then

1. I(D×D′) is isomorphic to I(D)× I(D′);

2. X−→ I(D) is isomorphic to I(X −→ D).

Proof. In both cases we have to show that there exists a bi-
jective correspondence which preserves the orderings. For
(1) the bijection is

[(d0,d
′
0),(d1,d

′
1)]

∼7−→ ([d0,d1], [d′0,d
′
1]).

www.manaraa.com

As for (2), the bijectionI(X −→ D) ∼= X −→ I(D) is
witnessed realised by the mutually inverse mappings below.

[f0, f1]
∼7−→ λx.[f0(x), f1(x)]

g
∼7−→ [λx.∧g(x),λx.∨g(x)]

Remark1. Theorem 4 holds for any bi-continuous function
f : D0× . . .×Dn −→ D. The pointwise lifting of f gives
a function I(f) : I(D0× . . .×Dn) −→ I(D) and from the
result above we have thatI(f) is (isomorphic to) a function
F : I(D0)× . . .× I(Dn)−→ I(D).

3 A Policy Language

Following our discussion we propose to operate with a lan-
guage for trust policies capable of expressing intervals, del-
egation, and a set of function constructions. We exemplify
the approach by studying the simple policy language below.

Syntax

The language consists of the following syntactic categories,
parametric over a fixed trust lattice(D,≤).

π ::= ppq (delegation)

| λx : P . τ (abstraction)

p ::= a∈ P (principal)

| x : P (vars)

τ ::= [d,d] ∈ I(D) (value/var)

| π(p) (policy value)

| e 7→ τ;τ (choice)

| op(τ1 . . .τn) (lattice op)

e ::= p = p (equality)

| ebop e (boolean op)

Hereop is a continuous function over(I(D),v), andbop is
a standard boolean operator. The elements of the category
p are either principals or variables. The main syntactic cat-
egory isπ: it can be either delegation to another principal
or a λ-abstraction. An element ofτ can be an interval, the
application of a policy, a conditional or the application of
a continuous operatorop. The elements ofe are boolean
functions applied to equalities between elements ofP .

It is worth noticing that such a simple language goes be-
yond delegation interpreted strictly. In fact, rather that al-
lowing principals to merely delegate somebody to decide
on their behalf, it allows them to consults with each other to
form complex, informed trust judgements. The examples to
follow will clarify this concept.

Semantics

We provide a formal semantics for the language described
above. As pointed out before,π is a policy. Hence the se-
mantic domain, as described in §1, will be the codomain of
the function

[[π]]σ : (P −→ P −→ T)−→ (P −→ T),

whereσ is an assignment of values inP to variables. The
semantic function[[·]]σ is defined by structural induction on
the syntax ofπ as follows.

[[ppq]]σm = m([p])σm;

[[λx : P. τ]]σm = λp : P .([τ])σ{p/x}m.

Here([·])σm is a(n overloaded) function which given an as-
signmentσ and a global trust functionm : P −→ P −→ T
maps elements ofp, τ, ande respectively to the semantic
domainsP , I(D), andBool as follows.

([[d0,d1]])σm = [d0,d1]

([π(p)])σm = [[π]]σm([p])σm

([e 7→ τ1;τ2])σm = if ([e])σm then ([τ1])σm else ([τ2])σm

([op(τ1 . . .τn)])σm = op(([τ1])σm, . . . ,([τn])σm)

([a])σm = a ([x])σm = σ(x)

([p1 = p2])σm = ([p1])σm = ([p2])σm

([e1 bop e2])σm = ([e1])σm bop ([e2])σm

Let {πp}p∈P be a an arbitrary collection of all policies,
whereπp = λx : P . ⊥ for all but a finite number of princi-
pals. The fixpoint semantics of{πp}p∈P is the global trust
function determined by the collection of individual policies,
and it is readily expressed in terms of[[·]]σ:

{[{πp}p∈P]}σ = fix(λm.λp.[[πp]]σm).

We believe that this policy language is sufficiently ex-
pressive for most application scenarios in GC, as supported
by the following examples. Note however that our ap-
proach generalises to any choice of underlying trust struc-
ture (T ,�,v), provided the operators used in the policy
language are continuous with respect to the information or-
dering.

Example 6 (Read and Write access).Let D = {N,W,R,RW}
represent the access rights to principal’s CVs. The setD is
ordered by the relation≤

∀d ∈ D.N≤ d and ∀d ∈ D.d≤ RW.

Let us consider how to express some simple policies in our
language. The following policy says thatLIZ’s trust inBOB

www.manaraa.com

is at least[W,RW] and depends on what she thinks ofCARL.
Instead,LIZ’s trust inCARL will depend on her trust inBOB:
if it is above[W,W] then[R,RW] otherwise[N,RW].

πLIZ = λx : P .

x = BOB 7→ [W,RW]∨pLIZq(CARL);
x = CARL 7→

([W,W]� pLIZq(BOB) 7→ [R,RW];[N,RW]);
[N,RW]

This policy can be made dependent on someone else’s
belief. For instance, the above judgement aboutBOB is
merged below withPAUL’s belief (weighed by discounting).

πLIZ = λx : P .

x = BOB 7→ [N,W]∨pLIZq(CARL)
∨pLIZq(PAUL)BpPAULq(x);

x = CARL 7→
([W,W]� pLIZq(BOB) 7→ [R,RW];[N,RW]);

[N,RW]

In this caseLIZ’s trust inPAUL is the bottom value[N,RW]
which is going to be the left argument of the discounting
operatorB.

Example 7 (Spam Filter). Let R be as in Example 2.
We illustrate some policies modelling filters for blocking
spam emails. The set of principalsP is the set of In-
ternet domains from which we could receive emails, e.g.
daimi.au.dk. A starting policy, where we suppose that
our serverspam.filter.edu knows no one, could be

π1 = λx : P . x = spam.filter.edu 7→ [1,1]; [0,1],

meaning that only internal emails are trusted. It could
happen thatspam.filter.edu starts interacting with other
principals. A likely event is that it receives a list of other
universities’ Internet domains, and decides to trust them to
a large extent, and actually use their beliefs. We could have

π2 = λx : P . x∈ UniList 7→ [.75,1];
∨

y∈UniList

pyq(x) ∨ π1(x),

where we suppose that “∈” stands for a chain of nested con-
ditionals for all the elements ofUniList. Let us suppose now
that the filter receives emails from a certain number of sus-
picious addresses, and would like to single them out and
enforce a special treatment for them. The policy could be
updated as

π3 = λx : P . x∈ BadList7→ [0, .5]; π2(x).

The spam-filter could then decide to add a new level of bad-
ness and create the new listVeryBadList. At the same time,

it would like to change the policy forBadListputting certain
restrictions on the intervals returned as other universities’
opinions.

π4 = λx : P .

x∈ VeryBadList7→ [0, .2];
x∈ BadList7→ π2(x)∧ [0, .5];
π2(x).

As illustrated in theSpam Filterexample, we see trust
evolution as being modelled by suitable updates of policies,
as response to, e.g., observations of principal behaviour.
However, it is still not clear exactly what update primitives
are required in practice. We are currently working on de-
veloping a calculus of of trust and principal behaviour, with
features for trust policy updates We will return on this in the
concluding section.

Example 8 (Reputation Based Systems).The work [20]
presents a reputation-based model of trust, where each prin-
cipal a has an associated historyHa of observations, or
events. A history(e1, . . . ,en) indicates that eventei has hap-
pened after eventse1, . . . ,ei−1, for all i. A principal can
provide information to the others (a.k.a. ‘recommending’)
based on its past history. This means that it is not trust be-
ing propagated between principals, but observations. Rep-
utation is then defined to be (as a formula satisfied) when a
principal has never been observed to ignore certain condi-
tions, i.e., if it never misused a resource.

Our approach is flexible enough to express some of this.
(A full treatment requires the integration of policy updates
in the policy language.) The idea is to make history part of
a policy π, so that a principal’s trust decision process can
be defined in terms of its own and other principals’ past ob-
servations. Let us consider the example of a peer-to-peer
file distribution system discussed in [20]. In such scenario,
users are allowed to download provided that they allows at
least one upload every three downloads. LetB be the set of
ordered boolean values, withff ≤ tt, and letN• be the set
of natural numbers completed with a top element∞. Histo-
ries are elements ofH = P →N•×N•, i.e. functions which
assign to principals the numbers of uploads and downloads
they performed in the past. Then,a’s trust functionπa is of
the kind

P →H→ B
where we understand thata after a historyh trusts x to
download if πa(x)(h) yields tt. The SERVer’s policy can
be written as follows in a suitable “sugared” version of our
language:

πSERV = λp : P .λh : H. let (u,d) = h(p) in d≤ 3u.

If access is granted,h is updated in view of the next invoca-
tion by increasingp’s count of downloads and, correspond-
ingly, its peer’s count of uploads.

www.manaraa.com

Conclusion and Further Work

We presented a novel model for trust in distributed dy-
namic networks, such as those considered in Global Com-
puting. The model builds on basic ideas from trust manage-
ment systems and relies on domain theory to provide a se-
mantic model for the interpretation of trust policies in trust-
based security systems. Our technical contribution is based
bi-ordered structures(T ,�,v), where the information or-
deringv measures the information contents of data, and is
needed to compute the fixpoint of mutually recursive poli-
cies, while the trust ordering� measures trust degrees and
is used to make trust-informed decisions. Trust and infor-
mation orderings, as relations, are continuous with respect
to each other. Following this lead, we presented an interval
construction as a canonical way to add uncertainty to trust
lattices, and used the theory to guide the design and under-
pin the semantics of a simple, yet realistic policy language.
We believe that the model can be used to explain existing
trust-based systems, as well as help the design of new ones.

We based our investigation on the notion of (complete)
lattice, since it is the standard in the literature. However,
there are reasons to believe thatupper semilattices– that
is ordered structures in which only bounded sets have least
upper bounds – provide a better starting model. From a
modelling perspective, it is easy to think of situations in
which it should not be possible to form the join of two trust
level. For instance, in a starship’s auto-destruction system,
the capabilities “possess key A” and “possess key B” to ig-
nite cannot be joined, as the capability of possessingboth
the keys is not contemplated in the system. From a theoreti-
cal point of view, the absence of a top element simplifies the
development of trust structures and enriches their theory.

We remark that the constructions illustrated here can be
understood in abstract (categorical) terms. We have chosen
to spell them out in set theoretical details to reach a wider
audience. In particular, looking at the partial order(D,≤) as
a category, our interval constructionI can be seen as the free
construction of adouble categorywith all ω-filtered colim-
its. Specifically,� andv are respectively the horizontal and
vertical arrows, while least upper bounds and their (mutual)
commutation laws are expressed by as colimits. Further-
more, the(I(D),�) component of the interval construction
is exactly thefunctor category Arr→D, whereArr = •→•
is the category with due objects and one non-identity arrow
between them. More generally, the construction is related
to the Yoneda embedding, as the image of thehom-functor
HomD : Dop×D → Set is (I(D),v). Starting from these
observations, we are currently investigating abstract char-
acterisations of the trust structures arising from the present
work.

We are clearly still at the first steps of development,
where we need to assess the generality of our approach

by applying it to various scenarios. Regarding semantics,
we aim at a theory to account for the dynamic modifica-
tion of the “web of trust,” as for instance occurs when a
principal updates its trust policy. Such modifications intro-
duce an element of non-monotonicity that we plan to in-
vestigate by extending our model with a “possible-world”
semantics, where updating a policy marks the transition to
a “new world” and triggers a (partial) re-computation of the
global trust function.

One of the main challenges ahead is to complement
the denotational model introduced here with an operational
model. In developing such a model we will need for in-
stance to address the question of how to compute trust in-
formation efficiently over the global network. The highly
dynamic nature of the kind of networks we are interested
in, and their lack of any central control whatsoever pose
serious challenges. In many applications it will not be fea-
sible or necessary at all to compute exact values: we thus
aim at techniques which allow to compute sufficient ap-
proximations to trust values. One issue is, as mentioned
above, the update of computed trust elements; it would be
interesting to investigate dynamic algorithms to update the
least fixpoint computation yielding the global trust function.
Another important issue is trust negotiation, whereby re-
quester and granter engage in complex protocols aimed to
convince each other of their reciprocal trustworthiness (for
the specific purpose at hand), without disclosing more evi-
dence than necessary. Similar ideas appear in the literature
as “proof carrying authentication” [1] and “automated trust
negotiation” [23].

In order to focus on the operational mechanisms of trust
evolution and propagation in a distributed setting, we are
currently working on acalculus of trustwhere principals’
behaviour is accounted for. The approach is in the style
of process algebras. Each principal is identified by a triple
a{{{A}}}π, wherea is the principal’s name,A the behaviour
which models its actions, andπ its trust policy, described
in a language such as the one presented in this paper. The
dynamics of the calculus consists of interactions between
principals, as for instance in:

a{{{b(((x)))A ||| A′}}}π ||| b{{{a〈e〉...B ||| B
′}}}π′

↘↘↘ a{{{A{e/x} ||| A′}}}π ||| b{{{B ||| B
′}}}π′ .

Such interactions are granted according to the involved
principals’ policies. Furthermore, principals can take de-
cisions based on their trust policies and – most importantly
– update their policies, as e.g.

a{{{[[[ζ]]]...A ||| B}}}π ↘↘↘ a{{{A ||| B}}}ζ(π),

whereζ is a suitable “policy transformer.” The overall idea
here is that policy updates are informed duringa’s evolu-
tion in time by its history of (un)successful interactions with

www.manaraa.com

other principals. The following example illustrates the mat-
ter further:

a{{{b(x)...(x= k)???[[[ζ1]]] ::: [[[ζ2]]]}}}π ||| b{{{[d0,d1]� π′(a)???a〈k〉 ::: 000}}}π′

Herea andb run in parallel. Principala is willing to receive
a message fromb and, depending on whether or not the
received value is the expectedk, it will update its policyπ
by ζ1 or by ζ2. On the other hand,b will attempt to interact
with a (and sendk) depending on whether its current trust
in a is above the threshold[d0,d1].

Our current work on such extended framework attempts
to capture the evolutionary aspects of trust in dynamic net-
works, together with the study of properties and related
analysis techniques of systems based on trust in such net-
works. A particular locus of activity regards the formula-
tion of type systems for the static control of trust. For in-
stance, one may want to guarantee that at any moment in
time the opportunity of an interaction betweena{{{A}}}π and
b{{{B}}}π′ can only present itself if the interaction is granted
by the policies, say e.g. if⊥≺ π(b) and⊥≺ π′(a).

Finally, we are also investigating ways for expressing
and studying security properties of systems based on dy-
namic trust evolution and propagation, such as those above.
Among the many approaches to checking of security prop-
erties, behavioural equivalences are particularly appealing.
A valid alternative could be designing a logic for expressing
properties of principals.

Acknowledgements. We would like to thank Karl Krukow and the
Secure project consortium and in particular the Aarhus group and the Cam-
bridge Opera group for the development of the research. Many thanks go
to Maria Vigliotti who contributed to early developments.

References

[1] A. W. Appel and E. W. Felten. Proof-carrying authentica-
tion. In Proc. 6th ACM Conference on Computer and Com-
munications Security, 1999.

[2] M. Blaze, J. Feigenbaum, and J. Lacy. KeyNote: Trust man-
agement for public-key infrastructure.LNCS, 1550:59–63,
1999.

[3] M. Burrows, M. Abadi, B. W. Lampson, and G. Plotkin. A
calculus for access control in distributed systems.LNCS,
576:1–23, 1991.

[4] M. Burrows, M. Abadi, and R. Needham. A logic of au-
thentication.In Proceedings of the Royal Society, Series A,
426:18–36, 1991.

[5] Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and
M. Strauss. REFEREE: Trust management for web ap-
plications. Computer Networks and ISDN Systems, 29(8-
13):953–964, 1997.

[6] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos,
and R. L. Rivest. Certificate chain discovery in SPKI/SDSI.
http://theory.lcs.mit.edu/˜rivest , 1999.

[7] Y. Ding, P. Horster, and H. Petersen. A new approach for
delegation using hierarchical delegation tokens. InCommu-
nications and Multimedia Security, pages 128–143, 1996.

[8] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M.
Thomas, and T. Ylonen. SPKI certificate theory.Internet
RFC 2693, 1999.

[9] T. Grandison and M. Sloman. A survey of trust in internet
application. IEEE Communications Surveys, Fourth Quar-
ter, 2000.

[10] G. Gr̈azer. Lattice Theory: First Concepts and Distributive
Lattices. Freeman and Company, 1971.

[11] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logi-
cal language for expressing authorizations. InProc. of the
1997 IEEE Symposium on Security and Privacy, Oakland,
CA, 1997.

[12] A. J. I. Jones and B. S. Firozabadi. On the characterisation
of a trusting agent. InWorkshop on Deception, Trust and
Fraud in Agent Societies, 2000.

[13] A. Jøsang. A logic for uncertain probabilities.Fuzziness
and Knowledge-Based Systems, 9(3), 2001.

[14] U. W. Kulish and W. L. Miranker.Computer Arithmetic in
Theory and Practice. Academic Press, 1981.

[15] D. H. McKnight and N. L. Chervany. The meanings of trust.
Trust in Cyber-Societies - LNAI, 2246:27–54, 2001.

[16] I. Pörn. Some basic concepts of action. InS. Stenlund (ed.),
Logical Theory and Semantic Analysis. Reidel, Dordrecht,
1974.

[17] P. V. Rangan. An axiomatic basis of trust in distributed sys-
tems. InSymposium on Security and Privacy, 1998.

[18] R. L. Rivest and B. Lampson. SDSI – A simple distributed
security infrastructure. Presented at CRYPTO’96 Rumpses-
sion, 1996.

[19] D. S. Scott. Domains for denotational semantics.ICALP ’82
- LNCS, 140, 1982.

[20] V. Shmatikov and C. Talcott. Reputation-based trust man-
agement. InWorkshop on Issues in the Theory of Security
(WITS), 2003.

[21] S. Weeks. Understanding trust management systems. In
Proc. IEEE Symposium on Security and Privacy, Oakland,
2001.

[22] U. G. Wilhelm, L. Buttỳan, and S. Staamann. On the prob-
lem of trust in mobile agent systems. InSymposium on
Network and Distributed System Security. Internet Society,
1998.

[23] W. H. Winsborough and N. Li. Towards practical automated
trust negotiation. InIEEE 3rd Intl. Workshop on Policies for
Distributed Systems and Networks, 2002.

[24] P. Zimmermann.PGP Source Code and Internals. The MIT
Press, 1995.

